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Abstract—Speech emotion recognition (SER) technology has
recently become a trend in a broader field and has achieved
remarkable recognition performances using deep learning tech-
nique. However, the recognition performances obtained using
end-to-end learning directly from raw audio waveform still
hardly exceed those based on hand-crafted acoustic descriptors.
Instead of solely rely on raw waveform or acoustic descrip-
tors for SER, we propose an acoustic space augmentation
network, termed as Dual-Complementary Acoustic Embedding
Network (DCaEN), that combines knowledge-based features with
raw waveform embedding learned with a novel complementary
constraint. DCaEN includes representations from eGeMAPS
acoustic feature and raw waveform by specifying a negative
cosine distance loss to explicitly constrain the raw waveform
embedding to be different from eGeMAPS. Our experimental
results demonstrate an improved emotion discriminative power
on the IEMOCAP database, which achieves 59.31% in a four
class emotion recognition. Our analysis also demonstrates that
the learned raw waveform embedding of DCaEN converges close
to reverse mirroring of the original eGeMAPS space.

Index Terms—speech emotion recognition, raw waveform, end-
to-end learning, acoustic space augmentation

I. INTRODUCTION

Speech emotion recognition (SER) is a key technology

in driving next-generation decision support solutions and

improving human-machine interface designs beyond current

capabilities [1], [2]. Utilization of SER has already been shown

in applications such as robotics [3], [4], marketing [5] and

medical care [6]. The increasing proliferation of research in

deploying SER technologies across domains inevitably require

further algorithmic development in improving its modeling

power especially given the current surge and successful use

of end-to-end deep learning architecture.

Traditionally, extracting hand-crafted acoustic features, i.e.,

computing a variety of knowledge-inspired low-level acoustic

descriptors (LLDs), provides the most effective way to achieve

high performing speech emotion recognition accuracy [7]–[9].

Recently, with deep networks, researches have demonstrated

that promising recognition accuracy could be achieved by

modeling the speech spectrograms without extracting hand-

crafted LLDs [10], [11]. Even further, end-to-end learning ar-

chitecture provides an opportunity to handle raw time-domain

acoustic data directly, e.g., Sarma et al. proposed a sophisti-

cated procedure in dealing with 1-D raw waveform, including

components of data perturbation, convolution layer designed

using Network-in-Network (NIN) and TDNN-LSTM-attention

temporal model [12].

However, performing SER directly from time-domain audio

data remains challenging. The accuracies obtained in most

cases do not surpass using spectrogram or acoustics LLDs.

Several research works have instead enhanced the discrimi-

native capacity of the recognition framework by augmenting

the acoustic feature space using representations learned from

both raw waveform and spectrogram/LLDs. For example,

Yang et al. utilized convolutional neural network (CNN) on

raw waveform and spectrogram separately and leverage their

complementary information by integrating both with a bidirec-

tional long short-term memory neural network (BLSTM) [13];

Lakomkin et al. proposed a progressive network augment-

ing pre-trained spectrogram representation with mel-frequency

cepstral coefficients (MFCCs) and pitch to benefit the robust-

ness of cross-domain SER tasks [14]. These augmentation

methods do not, however, explicitly learn to leverage the

complementary information exists between different types of

acoustic inputs while learning their associated representations.

In this work, we propose to learn from the raw waveform

directly to derive representations beyond knowledge-based

features as a method in augmenting the feature space used

to improve SER.

Specifically, we propose a Dual-Complementary Acous-

tic Embedding Network (DCaEN) to derive an augmented

acoustic feature space, i.e., concatenation of hand-crafted

knowledge-based feature network (eGeMAPS [15]) with com-

plementary representation learned from the raw waveform.

The waveform representation is learned using a novel negative

cosine similarity loss to explicitly extract embedding that cap-

tures information beyond eGeMAPS. We evaluate our frame-
work on a large scale emotion corpus, the USC IEMOCAP

database [16]. Our proposed DCaEN achieves 59.31% in a 4-

class emotion classification task, which improves 6.49% and
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Fig. 1. Illustration of our framework: Dual Complementary Acoustic Embedding Model. The model is divided into two stages: first, embeddings learned
from Feature Network with eGeMAPS is the input; second, we use an end-to-end architecture to learn complementary embedding from raw waveform with
cosine similarity constraint. Finally, these representations are concatenated to perform final SER.

1.95% relative compared to using raw waveform or eGeMAPS

feature set solely. We further provide an analysis to visualize

how the learned raw waveform embedding changes as a

function on the levels of negative cosine similarity constraint

placed on the architecture and its corresponding recognition

accuracy. The rest of the paper is organized as follows: Section

2 introduce the emotion database, features and our proposed

DCaEN model. In Section 3, we describe the experimental

setup, the recognition and visualization results. Finally, in

Section 4 we conclude with future works.

II. RESEARCH METHODOLOGY

A. Emotion Database

We use the USC Interactive Emotional Dyadic Motion

Capture (IEMOCAP) database [16] to evaluate our proposed

framework. The database consists of 5 sessions acted by 10

different actors including 5 males and 5 females. The database

has approximately 12 hours of data segmented manually

into utterances. Each utterance is annotated by at least three

annotators on 10 categorical labels.

In our experiment, we follow the exact same experimental

setting used in a previous work [17], i.s., using 4 emotion

classes as the targeted labels: sadness, happiness (include

excitement), anger and neutral with a total of 5531 utterances.

There are 1103 utterances for angry, 1636 for happy (includes

excitement), 1084 for sad, and 1708 for neutral.

B. Acoustic Feature Sets

Our proposed Dual Complementary Acoustic Embedding

Network (DCaEN) uses two different acoustic inputs to de-

rive the augmented acoustic representation, i.e., hand-crafted

acoustic features and raw waveform. In terms of the hand-

crafted features, we use the eGeMAPS feature set [15]. We

also perform preprocessing on the raw waveform. Both will

be described in the following.

1) Hand-Crafted Features: eGeMAPS: We compute the

functional extended Geneva Minimalistic Acoustic Parameter

Set (eGeMAPS) [15], which is an effective acoustic parameter

set used in multiple prior speech emotion recognition works

(e.g., [7]–[9]). The eGeMAPS includes 88 dimensions of

acoustic features per utterance resulting from implementing

the arithmetic mean, the coefficient of variation, 20th, 50th,

80th percentile on pitch and loudness LLDs, the mean and the

standard deviation of the slope of rising/falling signal parts on

the energy, spectral, and frequency. These LLDs are extracted

using 20ms frame size with 10ms step using the openSMILE

toolkit [18].

2) Raw Waveform Preprocessing: We define a fixed seg-
ment length for each utterance used in derving embedding

from raw waveform. The length is set as 6 seconds. If an

utterance is longer than 6 seconds, we take the first 6 seconds

worth of data; otherwise, we pad zeros for those utterances

that are shorter than 6 seconds. At 16 kHz sampling rate, each

utterance corresponds to a 96000-dimensional input vector. We

further divide this input vector into 150 sequential units with

a frame size of 640.

C. Dual Complementary Acoustic Embedding Network

Our proposed model, DCaEN, is illustrated in Fig. 1. It

includes two sub-structures: a Feature Network operates on
eGeMAPS and a Raw Waveform Complementary Network
learns complementary embedding directly from raw waveform.

The training process consists of two stages. Firstly, we train the

Feature Network using hand-crafted feature set with a neural
network architecture. Secondly, we train the Raw Waveform
Complementary Network using a novel constraint of negative
cosine similarity between the output of fully-connected layer

in the Feature Network and the output of the fully-connected
layer after the LSTM layer in the Raw Waveform Network.
Lastly, the two learned representations are concatenated for

final four-class emotion classifications. The details are de-



scribed in the following sections and the model parameters

are illustrated in III-A.

1) Feature Network (Stage 1): In the first stage, we train an
emotion recognizer on the hand-crafted feature set with fully

connected layers followed by a softmax layer using categorical

cross-entropy loss:

Lce(p, q) = −
∑

x

p(x) log q(x) (1)

where p(x) is the target label distribution and q(x) corresponds
to the predictions.The embedding layer from the feature

network learning can be seen as capturing relevant emotion

information in these hand-crafted features that characterize the

known psychoacoustics knowledge from feature engineering

experts. The embedding is then frozen (not updated again) to

be used as a basis for further complementary feature learning

from raw waveform (section II-C2).

2) Raw Waveform Complementary Network (Stage 2): With
the extracted embedding from the learned Feature Network, we
use an end-to-end deep learning architecture to model the raw

waveform for emotion recognition task [19]. It consists of two

stacked convolution layers and two stacked (long short-term

memory) LSTM layers followed by a fully-connected layer

and softmax dense layer for prediction. We additionally em-

ploy attention mechanism in each LSTM layer for flexible time

dependency modeling. In order to learn the complementary

representation, we constrain the output of the fully connected

layer in the Raw Waveform Complementary Network and the
corresponding output of the Feature Network using a negative
cosine similarity (Equation 2), i.e., we expect the cosine

similarity to be as small (as close to -1) as possible when

learning the complementary embedding from raw wavform.

The cosine complementary loss is shown below, where x1 and

x2 are different representations.

Lcos(x1, x2) =
x1 · x2

‖x1‖ ‖x2‖ (2)

The representation derived from the Raw Waveform Comple-
mentary Network can be seen as emotionally-relevant embed-
ding though resides in an opposite space as the embedding

space learned from the Feature Network operated on the hand-
crafted feature set.

Finally, to leverage the discriminative power of both hand-

crafted features network embedding and the complementary

representation from raw waveform, we concatenate these two

representations and optimize the network with a joint loss

(Equation 3),

L = wLcos − (1− w)Lce (3)

where w is a weighting term. The joint loss is the weighted

sum of the categorical cross-entropy loss of emotion cate-

gories and the cosine complementary loss. The model jointly

optimizes these two losses to obtain an augmented acoustic

embedding to perform the SER task on IEMOCAP.

III. EXPERIMENTAL SETUP AND RESULT

In section III-A, we will describe different comparison

models used in our recognition tasks and the network con-

figuration along with parameter choices. In section III-B and

section III-C, we will report the accuracy comparison of the

recognition experiments and also the visualization analysis on

the learned complementary embedding.

A. Experiment Setting

In our experiment, we use leave-one-session-out 5-fold cross

validation scheme where 4 sessions are used for training and 1

complete session for test evaluation. In all the results, we use

unweighted average recall (UAR) as the metric for evaluation.

1) Comparison Models: We compare with the following
models and report results in section III-B:

• Raw: Raw Waveform Complimentary Network without
using the cosine constraint

• Ftr eg: Feature Network with eGeMAPS features intro-
duced in section II-B

• Ftr em: Feature Network with emobase2010 features

[20]

• E nC: Dual network architecture with the same structure
as our proposed DCaEN but learning without the cosine

constraint

• E Ceg: Dual complementary acoustic embedding net-
work but with cosine similarity constrain placed directly

on the eGeMAPS without learning through network em-

bedding from the Feature Network
• E uF: Dual complementary acoustic embedding network
with the Feature Network weights updated together when
training Raw Waveform Complementary Network in stage
2 (i.e., non-frozen hand-crafted feature embedding)

• E C0: Dual complementary acoustic embedding network
with cosine similarity constraint set close to 0

• R C: Raw waveform network with cosine similarity con-
straint but without concatenate the representation learned

from the hand-crafted feature set.

Specifically, we compare eGeMAPS feature set introduced in

section II-B1 with the emobase2010 [20], which contains 1582

dimensions computed based on 34 low-level descriptors in

constructing the input feature set for Feature Network. We
also compare the effectiveness of different levels of consine

constraints to further validate the complementary learning

strategy in our proposed network for emotion recognition.

2) Network Configuration: In all of our network optimiza-
tion, we use the Adam optimizer with learning rate 10−3 and

train 20 epochs with mini-batch size 32. Each dimension of the

hand-crafted feature is z-normalized with respect to individual
speaker. The Feature Network uses a 64 nodes fully-connected
layer with dropout probability 0.5.

In the Raw Waveform Complementary Network, each frame
is convolved with 40 filters of kernel size 20 to extract features

from high sampling rate signal, and then downsample to 8 kHz

by pooling each filter output with a pool size 2. To extract

long-term characteristics of the speech and roughness of the



TABLE I
COMPARED MODELS ON EMOTION RECOGNITION RESULTS. DCAEN IS OUR PROPOSED DUAL COMPLEMENTARY ACOUSTIC EMBEDDING NETWORK.

THE BEST UAR OBTAINED IS IN BOLD: 59.31%

Models Raw Ftr eg Ftr em E nC E Ceg E uF E C0 R C DCaEN

Sad 72.05% 64.11% 66.70% 66.14% 71.22% 68.63% 64.21% 71.22% 68.45%

Happy 27.81% 52.87% 51.89% 49.69% 54.16% 49.39% 49.82% 25.31% 50.12%

Angry 55.85% 54.67% 59.11% 54.67% 47.96% 54.49% 54.49% 57.75% 58.30%

Neutral 55.56% 57.79% 52.93% 57.44% 52.93% 56.03% 59.66% 60.25% 60.36%

UAR 52.82% 57.36% 57.66% 56.99% 56.57% 57.14% 57.04% 53.63% 59.31%

speech signal, we convolve the pooled frame using kernel

size 40 in each filter followed by max-pooling layer across

the channel domain with a pool size of 10. Then, we use

2 stacked LSTM each with 256 cells with attention to learn

the sequential dependency. Afterwards, a fully connected layer

with 64 nodes to derive the final embedding.

The two concatenated embedding layers from the Feature
Network and the Raw Waveform Complementary Network lead
to a representation with a total of 128 feature dimension for

each utterance sample. The weight of loss function (equation

3) is specified as w = 0.6 using grid-search.

B. Recognition Results

All of our comparison results are reported in Table I. For

the baseline models, Raw (52.82%) obtains lower accuracy

than Ftr eg (57.36%) reinforcing past knowlege that the

knowledge-based acoustic features possess better discrimina-

tive power and the challenges in modeling raw waveform

for speech emotion recognition. When examining Ftr em,
which includes a much higher dimension, the performance

obtained is not significantly better than using just 88 dime-

nional eGeMAPS. The emobase2010 feature set likely encom-

passes non-emotionally-meaningful redundancy as compared

to eGeMAPS for the IEMOCAP dataset.

Our proposed DCaEN model significantly outperforms both

Raw and Ftr eg as shown in Table I (6.49% and 1.95%

relative improvement respectively). We compare it with the

E nC to examine the importance of using our proposed use

of cosine dissimilarity constraint. E nC can be imagined as

a naive concatenation of both hand-crafted feature embedding

and raw waveform embedding. The accuracy obtained using

E nC shows barely no improvement over Ftr eg, likely due
to the fact without using a proper constraint, these two

representations (hand-crafted feature set and raw time wave-

form) could be capturing redundant acoustic characteristics.

Furthermore, our method outperforms accuracy obtained using

the E Ceg. E Ceg places the constraint directly on the original
eGeMAPS 88 dimensions without first learning an emotional

discriminatory embedding with the Feature Network, which
further degrades the quality of the complementary learning in

the Raw Waveform Complementary Network.
Since our DCaEN tends to minimize the cosine similarity,

i.e., making the distance closer to -1, we further compare to

the results obtained with orthogonal cosine constraint, i.e.,

TABLE II
THE RESULTS OF DIFFERENT THRESHOLD ON COSINE SIMILARITY. WITH

NUMBER OF THRESHOLD CLOSE TO -1 WHICH MEANS NEGATIVE
CORRELATION, THE UAR IS HIGHER.

Threshold UAR

-0.5 57.49%

-0.6 57.82%

-0.7 58.21%

-0.8 58.57%

Learnable 59.31%

distance lower bounded by 0 (E C0). E C0 does not improve
performances in this recognition tasks further demonstrating

that while mining additional information from raw waveform,

making the embeddings dissimilar to the hand-crafted feature
embedding is not sufficient. There needs to be a stronger

constraint pushing the learned embedding space to the opposite

direction. The simple dissimilar criterion may lead to a con-

vergence point that carries emotionally-irrelevant information.

Furthermore, the sequential training strategy is important in

our proposed network architecture, i.e., the learned knowledge-

derived feature embedding from the stage 1 Feature Network
needs to be frozen when feeding into the stage 2 Raw Wave-
form Complementary Network. This effect is evident when
comparing the results obtained using E uF and our DCaEN.
Additionally, R C uses embedding only from the Raw

Waveform Complementary Network. This model outperforms
Raw slightly indicating that the intregration of the joint cosine
similarity loss from expert-knowledge features is beneficial

in searching for a better hidden dimensions directly from the

raw waveform. Lastly, our framework improves upon previous

algorithm [14] on using two different acoustic input on the

same set of IEMOCAP database, which reports a UAR of

58% as compared to our method of 59.13%.

C. Analysis on Levels of Complementary Constraint

In this part, we provide an analysis on the learned em-

bedding from the Raw Waveform Complementary Network
by visualizing it on a 2D space with different levels of

cosine distance constraint. In order to understand the accuracy

obtained as a function on the levels of the constraint, we train



(a) Threshold: 0 (b) Threshold: -0.5 (c) Threshold: -0.6

(d) Threshold: -0.7 (e) Threshold: -0.8 (f) Learnable Constraint

Fig. 2. Visualization of the raw waveform embedding and eGeMAPS feature embedding on 2-D space with different constraint thresholds. As the thresholds
tends toward -1, the two representations become similiar though in a reverse direction.

our proposed DCaEN with a modified threshold loss function,

Lthres = w |Lcos − threshold| − (1− w)Lce (4)

which can limit the lower-bound values of cosine distance loss

to the specified threshold. Table II lists the UARs obtained as

different values of threshold placed on the constraint. A quick

observation can be seen is that the UARs improves as the

threshold tending toward more negative values. Meanwhile,

we use t-distributed Stochastic Neighbor Embedding (t-SNE)

to project the embedding onto a 2D space for visualization

on both the learned embedding using raw waveform and the

Feature Network embeddings from the eGeMAPS features.
From Fig 2, we can observe that the raw waveform em-

bedding and hand-crafted feature embedding form a separated

and yet opposite pattern as the threshold gets closer to -1.

Specifically, if we compare between threshold set to 0 and

closer to -1, the learned raw representation at threshold 0

shows a weary shape, and as the threshold becomes more

negative, the representation learned from raw waveform seems

to converge to a similar shape as the hand-crafted feature

embedding just at a 180 degree mirroring reverse. The im-

provement in the recognition could potentially be attributed to

the fact that each of these spaces includes relevant emotional

discriminatory information but reside in a different subspace,

hence, by concatenating the two representations, it provides

an augmented modeling power.

IV. CONCLUSIONS

We propose a Dual Complementary Acoustic Embedding

Network (DCaEN) to perform speech emotion recognition.

DCaEN includes two sub-structures: Feature Network that

uses expert knowledge-driven acoustic parameters and Raw
Waveform Complementary Network that uses raw waveform

directly to learn an acoustic embedding. We propose to use

an explicit cosine distance constraint with a sequential op-

timization strategy for our DCaEN. This method effectively

learns emotionally-relevant information beyond conventional
acoustic parameters directly from the raw waveform, and by

concatenating both representations, we demonstrate that our

framework can improve 4-class emotion recognition rates to

59.13% on the IEMOCAP dataset. For future works, we will

immediately apply the same architecture on other large scale

emotion corpus to validate the robustness of our DCaEN, and

further, aside from constraining on eGeMAPS, we can explore

other domain expert knowledge as auxiliary information in

better achieving high-performing end-to-end speech emotion

recognition.
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